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Abstract. A general formalism is developed to obtain series expansions of the average 
number of physical clusters of particles in the framework of Mayer’s theory. 

The special case of lattice systems is investigated in more detail and some preliminary 
results are given on the relation between percolation (namely the formation of an infinite 
cluster) and condensation in fluid systems in the lowest approximation (summation of chain 
diagrams). 

1. Introduction 

The concept of physical clusters has been widely applied in recent years. The distribu- 
tion of physical clusters for a lattice system is directly connected to the percolation 
problem (for a review see Shante and Kirkpatrick 1971, Essam 1973) and has recently 
been investigated using the renormalization group technique (Harris et a1 1975). This 
distribution is also of interest in the problem of the dilute ferromagnet (Elliot and Heap 
1962, Rapaport 1972) and in a system of random resistors (Kirkpatrick 1973, and 
references cited therein). 

A knowledge of the cluster distribution might also be of some help in the nucleation 
problem which has been studied by Binder (1975). The shape of the clusters in a lattice 
gas has been investigated by Domb (1976) and by Domb et a1 (1975) using Monte Carlo 
techniques. A connection between physical clusters and the phase transition in the 
Ising model has been found by Coniglio (1976) and Coniglio et a1 (1976, 1977). The 
location of the percolation point in the three-dimensional Ising model has also been 
investigated by Muller-Krumbhaar (1974) using Monte Carlo techniques. 

Our aim in this paper is to find a general formulation of the distribution of physical 
clusters following Hill’s initial work (Hill 1955). In H 2 we recall briefly the basic 
concepts of Hill’s work and then proceed to find the general series expansions for the 
average number of physical clusters and a rule to build the successive coefficients in the 
activity expansion. In 0 3 some of these coefficients are evaluated for a lattice system in 
terms of the lattice constants. In H 4 the general formalism is used to gain a first insight 
into the problem of condensation of fluid systems and the corresponding behaviour of 
physical clusters. 
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2. The general formalism 

In Hill’s work physical clusters are defined in phase space for systems which can be 
described in terms of pair potentials u(rij):  n particles belong to the same cluster if they 
are pairwise bound in phase space (negative total energy) . This division of phase space 
leads to the introduction of two effective potentials: 

u(r) > 0 { - kT in F(r )  u ( r ) s O  u+(r )  = 

u(r)>O { - kT ln(1 - F ( r ) )  u ( r ) s O  u*( r )  = 

where F(r)  is given by the incomplete r function: 

where p = l /kT.  These U +  and U* are the effective potentials between bound and 
unbound pairs respectively and substitution of equation (1) into each of the exp(-puzj) 
appearing in the partition function QN of N particles gives an immediate recipe to 
obtain the partition functions QNINZ...NNof specified sets of physical clusters ( N ,  clusters 
of 1 particle, N2 clusters of 2 particles. . .) such that 

QN = QN~...” 
{NI...NN) 

where the sum is over all partitions of N with the condition 

N 

1 sN, = N. 
s = l  

(3) 

This is most easily seen diagrammatically: if we associate a full circle with each particle, 
a full line with each exp(-pu’) bond and a broken line with each exp(-pu*) bond then 
for N = 3 for instance we have: 

Q3 = Q ~ O O  + Q i i o  + Qooi 

and the corresponding graphs are shown in figure 1 where the first diagram represents 
three clusters of one particle (Q300), the second one represents one cluster of two 
particles and one cluster of one particle (Qllo) and the last two diagrams give the cluster 
of three particles (Qool). From the diagrams it is easy to write out the terms explicitly 
with a field integration for each point and an overall factor (N!AN)-’  where A is the 

%lo 4 1 0  Q00l 

Figure 1. Clusters of three particles. The coefficients take care of permutations. 
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thermal wavelength. For instance 

These partition functions are used to write down the grand partition function of the 
system in a multicomponent formalism: 

where As is the absolute activity of the s-species (clusters of s particles) and at 
equilibrium A, = A s  where A is the absolute activity of the system. The multicomponent 
formalism allows one to calculate the average number of s clusters: 

Whereas in Hill’s work only the first few terms in ( 5 )  are calculated explicitly we wish 
here to give an expression for the general term AN in the activity expansion. In order to 
do this we have to calculate the coefficients in the logarithm of the multicomponent 
grand partition function which can be written in the general form: 

In==  A ? .  . .AENbhl...Nw 
N2-1 {NI...”) 

Now bLl,,.” can be obtained from the known QN1,,,NN using the same general theorem 
on graphs which allows one to calculate the connected integrals bN from QN in Mayer’s 
theory for one variable (see Domb 1974a, theorem 1). To make this theorem 
applicable to our case we define the functions: 

11 f* 11 = e+”Q - 1 (7) f’= e-Pu;. 

and then replace each exp(-@U*) bond in the QN1.,,NNdiagrams by (1 + f*) and associate 
a wavy line with the f*  bond keeping the full lines to represent exp(-puf) = f’ bonds; a 
new set of diagrams develops which, unlike the previous ones which are all fully 
connected, contains connected and unconnected graphs (connected graphs are those 
graphs where there is at least one path, formed of lines and/or wavy lines, between any 
two points). For these new sets of graphs all the conditions of theorem 1 are satisfied: 
thus the bh,.,,” are the connected parts of the QN1,,,NN. An example for N = 3 is given 
in figure 2 where the decomposition of the Q in terms off bonds is shown; the b for this 
case are the connected graphs of figure 2 and are shown in figure 3. 

The explicit integrals for the b now have to be written in terms off functions, e.g.: 

Then from equations ( 5 )  and (6) we get: 

(Ns)= c A N  NsbiN] 
N a s  { N }  

where the sum is over all partitions {N} = {NI . . .. NN} satisfying condition (3). 
Introducing a new set of coefficients 
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A + 3  n +3 A i p iF! b+? i’--.\L = 

Figore 2. Decomposition of clusters of three particles in terms off’ and!* bonds defined by 
equation (7) in the text. 

t 
o i  

bio 1 + 3  A +3 

Figure 3. Connected graphs of figure (2) corresponding to the coefficients bN,N2N3.  

we can write the expansion in terms of the activity z = h / A  as: 

Equation (8) gives the general activity expansion for the equilibrium distribution of 
physical clusters in the system with coefficients defined in terms of partial partition 
functions Q N I , , , N N .  

We wish to point out however that there is a more direct way of obtaining the 
coefficients bN,...” starting with Mayer’s connected integrals 

where the sum is over all connected graphs of N particles and the fij are Mayer’s 
functions: 

hi = exp(-puij) - 1 =f; +f$. (10) 
It is easy to show that if each f bond in the graphs for bN is changed according to (10) 
then the resulting graphs can be collected to give back the b{Nl and 

N 
bN = b { N ] ,  sNs = N. 

{ N }  s = l  

Equation (11) gives an immediate recipe to obtain the coefficients in the activity 
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expansion (8). We write out explicitly the first few terms for the partial densities 
Ps = "I v: 

pi = 612 +2b20Z2+(3b300fb110)23f .  . . 
p2= b o l ~ ~ + b 1 1 0 ~ ~ + ( 2 b 0 2 0 0 + b 2 1 0 0 ) ~ ~ + .  . . (12) 

p3 = ~ o o 1 ~ 3 + ~ 1 0 1 0 ~ 4 + ( ~ 2 0 1 0 0 + ~ 0 1 1 0 0 ) ~ 5 + .  . . 
and it is easy to check that these coincide with Hill's results. 

3. Latticegas 

The formalism of Q 2 has a straightforward application to a lattice system where the 
coordinates of the particles can only assume discrete values and integrations are 
replaced by summations over lattice sites: 

r," otherwise. 

The interaction is 

if i=j  
U,, = --E if i and j are nearest neighbours 

Let us define the function 

+1 if i and j are nearest neighbours 
otherwise. ell = [ 0 

Then the effective potentials introduced in 8 2 are: 

and there is a major simplification in this case as the coefficients in the activity expansion 
can be expressed in terms of weak lattice constants (for the terminology see Domb 
1974b) which are tabulated. For instance for N = 2 only the weak lattice constant q/2 
of the two-point graph is needed and we have: 

b20= -$-$q; bol = $q e@'. 

Thus 

b2 = bo1 + b20 = -4 + isf ( f=eP'- l )  

which is in agreement with Domb (1974b). For N =  3 both 4/2 and p 3  are needed, 
where p 3  is the weak lattice constant of the three-point graph (triangle) and we have: 

bo,, =p3(e3Pe-3 e'P')-e'Pe($q2--1 
2 4 )  

bl lo  = (3p3-q2) ePs 

b300 = 4+$4(4 - 1)-p3 
which gives 

b -1 
3 - 3 - 4f + 44 (4 - 1)f' + p3f3 

in agreement with Domb (1974b). 
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The recipe to obtain the coefficients explicitly is to use equation (13) for the bonds in 
the graphs for the b:  then the summation over lattice sites for the resulting configura- 
tions gives the appropriate weak lattice constants. 

4. Percolation and condensation 

4.1. Preliminary considerations 

In this section we consider the possible connection between condensation and percola- 
tion, which has been investigated, as far as we know, only for lattice systems. For a 
system of interacting spins Coniglio (1976) has shown on the Bethe lattice that the 
percolation point, i.e. the point where an infinite cluster begins to appear in the system, 
is located on the coexistence curve before the critical point. For a ferromagnetic Ising 
model it has been proved by Coniglio et a1 (1976, 1977) that spontaneous magnetiza- 
tion can only exist upon formation of an infinite cluster of spins. It is also proved that in 
the two-dimensional model the critical point is also a percolation point, whereas in the 
three-dimensional model there is some indication that the percolation point should 
appear before the critical point is reached (Muller-Krumbhaar 1974, Sykes and Gaunt 
1976). 

We have started an investigation of the problem of condensation and percolation in 
the framework of the general formalism developed in the present work which is valid for 
lattice as well as fluid systems. The idea is to use the formalism to evaluate, in successive 
approximations, i.e. summation of diagrams, the percolation quantities related to 
condensation as well as explicit contributions of the physical clusters to the thermo- 
dynamics of the system. The results of the lowest-order approximation are presented 
here mainly to show the possible use of the general formalism. 

The idea that condensation of a fluid system is somehow related to the formation of 
large ‘clusters’ in the system is the central point in the theories of Frenkel, Band and 
Mayer (see Hill 1956). 

Here we wish to show, in the lowest approximation, how the condensation point (in 
the sense of Mayer’s theory) is also a percolation point (formation of a large ‘physical’ 
cluster in the system). 

The relevant quantities in percolation theory are: 

where ii is the mean number density of clusters, P i s  the percolation probability (i.e. the 
probability that a given particle belongs to an infinite cluster) and S is the mean cluster 
size (for finite clusters). 

These quantities near the percolation point behave, respectively, like the free 
energy, the spontaneous magnetization and the susceptibility of a ferromagnet near the 
critical point (Essam 1973): in fact at the percolation point ii shows a weak singularity, P 
starts increasing from its zero value and S diverges. 

Since we approach the percolation critical density from lower densities (gaseous 
system) we have 

m 

P = c SPS (15) 
s = 1  

and P is always identically zero. We are thus left with ii and S. 
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4.2. Gas of ideal clusters in the chain approximation 

From equations ( 8 )  and (11) the activity expansions for the pressure and ti can be 
written as: 

First we sum over all chain diagrams (no nodal points and no closed loops) with only f' 
bonds: clearly in this case each diagram of S points is a cluster of S particles, i.e., 
Z, N, = 1 and Z(Nl b g ]  = bg , , , , .  So in this approximation 

PPCO) = do) (17) 

where the superscript means that no f * bond has been considered (pressure of an ideal 
gas of clusters). Now in the chain approximation: 

1 
b:d...,=-/ 2 v  . . . I d r , .  . .drNf+(1,2)f'(2,3). . . f ' ( N - l , N ) = $ ( b ' ) N - l  

where 2 is the symmetry factor of the chain diagrams and: 

b + =  f+(r) dr. I 
Then 

The density in the same approximation is: 

and the mean size of the physical clusters is given by p'o'S'o' = zap'"/dz. 
When interpreted in the framework of Mayer's theory these results show that the 

condensation point is given by z,,,~ = l/b' > 0 which is also the point where S'O' diverges 
thus showing coincidence of condensation and formation of an infinite physical cluster. 

4.3. Gas of interacting clusters in the chain approximation 

Insertion of a single f* bond in the chains will now produce the lowest-order contribu- 
tion of the interaction between clusters. 

It is easy to see that the effect of an f* bond in any chain is to break the single cluster 
into two separate 'interacting' clusters so that now Z, N, = 2 and then (the superscript 1 
refers to the presence of a single f*): 

b* = f*(r) d r  f i ' l ) =  n -'O) + ~ ~ ( N - l ) b * ( b + ) ~ - ~ ;  
NZ-2 

where ( N -  1) accounts for the ways of inserting f* in an N-particle chain. Summation 
of equation (22 )  gives: 
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The pressure in the same approximation is: 

Thus 

and the second term now gives the contribution of the interaction to the pressure to first 
order in b*. The density in this approximation is then given by zapP"'/az. The mean 
cluster size is now: 

It is easy to show that 
N -  1 

S s=l 
1 s2N,= 2 [ s ~ + ( N - s ) ~ ] = - ~ N ~ + N ~ + ~ N  

and then 

where 

The conclusion is that the effect of interaction to this order does not change the critical 
point of percolation and condensation. Insertion of all possible f *  bonds in the chains 
however does change the condensation point. In this case in fact (the chain with all 
possible bonds): 

where 

b = 1 f(r) dr  = -2B2( T )  

where B,(T) is the second virial coefficient. The pressure and density are then: 

z 2-zb  z 2 - z b  b 
2 1-zb'  ' = i S + T  ( l - z b ) ' .  

p p = - - *  

The condensation point is now given by zcrlt = 1/b  for b > 0: it is interesting to note that 
since b(T)  can also be negative this implies the existence of a critical temperature 
b( T,) = 0 above which there is no condensation. 

What can be said in this approximation for the percolation point? It is not too 
difficult to calculate E: in fact in this case 

Ns = number of f *  bonds+ 1 
S 
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and this leads us to write the general term as: 

-z"-A(b++Ab*)"-'l i a  . 
2 ah A = l  

Thus: 

- z 2-zb  z zb* n=-- 
2 l - z b ' j  (1-zb)" 

Comparison with equation (30) gives: 

z zb* 
2 ( l -zb)"  

pp.=fi-- 

Direct calculation of S is not straightforward in this approximation: however, since in 
percolation theory the singula1 point for f i  is also the point where S is divergent (though 
there is no general proof of this) one might be led to the conclusion (from equation (31)) 
that the percolation point still coincides with the condensation point in the chain 
approximation. We are now trying to give a definite answer to this question by a 
calculation of S via the pair connectedness function (Essam 1973). 

5. Conclusions 

General series expansions have been obtained for the distribution of physical clusters in 
interacting systems. 

These can be used in connection with the general techniques for diagrammatic 
summations in a variety of problems. For the particular case of the relation between 
condensation and percolation we have shown that the percolation and condensation 
point (in the sense of Mayer's theory) coincide to lowest order in the chain approxima- 
tion. It is now of great interest to carry OR to sum all tree diagrams: this approximation 
is known to be equivalent to the second virial coefficient in the density expansion of the 
pressure and gives condensation in the sense of Van der Waal's theory; the question is 
which is the behaviour of the percolation quantities in the same approximation. 
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